Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 197: 106481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593647

RESUMO

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Assuntos
Água do Mar , Compostos de Sulfônio , Animais , Água do Mar/química , Enxofre/metabolismo , Compostos de Sulfônio/química , Compostos de Sulfônio/metabolismo , Sulfetos/metabolismo , Bactérias/metabolismo , Fitoplâncton , China , Zooplâncton/metabolismo
2.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38310328

RESUMO

Preterm birth (PTB) is a major problem affecting perinatal health, directly increasing the mortality risk of mother and infant that often results from the breakdown of the maternal-fetal immune balance. Increasing evidence shows the essential role of mucosal-associated invariant T (MAIT) cells to balance antibacterial function and immune tolerance function during pregnancy. However, the phenotype and function of placental MAIT cells and their specific mechanisms in PTB remain unclear. Here, we report that MAIT cells in placentas from PTBs show increased activation levels and decreased IFN-γ secretion capacity compared with those from normal pregnancies. Moreover, our data indicate gravidity is a factor affecting placental MAIT cells during pregnancies. Multi-omics analysis indicated aberrant immune activation and abnormal increase of lipids and lipid-like metabolites in the PTB placental microenvironment. Moreover, the proportion and activation of MAIT cells were positively correlated with the abnormal increase of lipids and lipid-like metabolites. Together, our work revealed that abnormal activation and impaired function of MAIT cells may be related to abnormal elevation of lipids and lipid-like metabolites in PTB.


Assuntos
Células T Invariantes Associadas à Mucosa , Nascimento Prematuro , Recém-Nascido , Gravidez , Lactente , Humanos , Feminino , Placenta , Feto , Lipídeos
3.
Clin Transl Med ; 14(1): e1563, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38279869

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS: The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS: High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS: Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peptidase 7 Específica de Ubiquitina/genética
4.
Environ Pollut ; 344: 123308, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185352

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have gained global concern due to their detrimental effects on marine organisms. We investigated the effects of 80 nm polystyrene (PS) NPs on life history traits, ingestion, and dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP) production in the rotifer Brachionus plicatilis. Fluorescently labeled 80 nm PS NPs were ingested by the rotifer B. plicatilis and accumulated in the digestive tract. The lethal rates of B. plicatilis exposed to NPs were dose-dependent. High concentrations of PS NPs exposure had negative effects on developmental duration, leading to prolonged embryonic development and pre-reproductive periods, shortened reproductive period, post-reproductive period, and lifespan in B. plicatilis. High concentrations of PS NPs exposure inhibited life table demographic parameters such as age-specific survivorship and fecundity, generation time, net reproductive rate, and life expectancy. Consequently, the population of B. plicatilis was adversely impacted. Furthermore, exposure to PS NPs resulted in a reduced ingestion rate in B. plicatilis, as well as a decreased in DMS, particulate DMSP (DMSPp) concentration, and DMSP lyase activity (DLA), which exhibited a dose-response relationship. B. plicatilis grazing promoted DLA and therefore increased DMS production. PS NPs exposure caused a decline in the increased DMS induced by rotifer grazing. Our results help to understand the ecotoxicity of NPs on rotifer and their impact on the biogeochemical cycle of dimethylated sulfur compounds.


Assuntos
Traços de História de Vida , Rotíferos , Sulfetos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/farmacologia , Poliestirenos/farmacologia , Ingestão de Alimentos , Poluentes Químicos da Água/toxicidade
5.
Hepatol Int ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823937

RESUMO

BACKGROUND AND AIMS: T cells are master effectors of anti-tumor immunity in cancer. Recent studies suggest that altered lipid metabolism imposed by the tumor microenvironment constrains anti-tumor immunity. However, the tumor-associated lipid species changes that dampen T cell ability to control tumor progression are not fully understood. Here, we plan to clarify the influences of distinctly altered lipid components in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) on T-cell function, aiming to seek lipid metabolic targets for improving T cell anti-tumor effects. METHODS: Tumor tissues and non-tumor liver from HCC patients were collected for RNA-sequencing, lipid profiling and T cell characterizing, followed by correlation analysis. Additionally, the effects of significantly changed lipid components on anti-tumor potential of T cells were tested by in vitro cell experiments and/or in vivo tumor inoculated model. RESULTS: Altered lipid metabolism coincides with impaired T cell response in HBV-related HCC. Characteristic lipid composition, significantly marked by accumulation of long-chain acylcarnitines (LCACs) and reduction of lysophosphatidylcholines (LPCs), are found in the tumor tissue. Notably, LCACs accumulated are associated with T cells exhaustion and deficient functionality, while LPCs correlate to anti-tumor effects of T cells. In particular, supplement of LPCs, including LPC (20:0) and LPC (22:0), directly promote the activation and IFN-γ secretion of T cells in vitro, and suppress tumor growth in vivo. CONCLUSIONS: Our study highlights the distinctly changed lipid components closely related to T cell dysregulation in HCC, and suggests a promising strategy by decreasing LCACs and increasing LPCs for anti-tumor immunotherapy.

6.
Arch Virol ; 168(10): 258, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770803

RESUMO

Getah virus (GETV) is an emerging zoonotic virus that can infect humans and many mammals through mosquitoes. In this study, a novel pathogenic GETV strain, GDQY2022, was isolated from a pig farm in Guangdong Province, China. Sequence comparisons and phylogenetic analysis showed that GDQY2022 belongs to group III (GIII) and was most closely related to strain HeN202009-2, with 99.78% nucleotide sequence identity. Histopathological examination revealed significant pathological changes, such as widened alveolar septum in the lungs with mild congestion and hemorrhage. Differences in viral load between tissues were assessed by real-time RT-PCR, and significantly higher levels of GETV were found in abdominal lymph nodes and lungs of subclinically and clinically affected pigs (P < 0.01). This study provides valuable data for understanding the risk of GETV infection in the pig industry and a reliable basis for studying the pathogenic mechanisms and diagnostic surveillance of GETV.


Assuntos
Alphavirus , Culicidae , Humanos , Suínos , Animais , Filogenia , Virulência , China/epidemiologia , Mamíferos
7.
Membranes (Basel) ; 13(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37623787

RESUMO

Competition for the migration of interfering cations limits the scale-up and implementation of the Donnan dialysis process for the recovery of ammonia nitrogen (NH4+-N) from wastewater in practice. Highly efficient selective permeation of NH4+ through a cation exchange membrane (CEM) is expected to be modulated via tuning the surface charge and structure of CEM. In this work, a novel CEM was designed to form a graphene oxide (GO)-polyethyleneimine (PEI) cross-linked layer by introducing self-assembling layers of GO and PEI on the surface of a commercial CEM, which rationally regulates the surface charge and structure of the membrane. The resulting positively charged membrane surface exhibits stronger repulsion for divalent cations compared to monovalent cations according to Coulomb's law, while, simultaneously, GO forms π-metal cation conjugates between metal cations (e.g., Mg2+ and Ca2+), thus limiting metal cation transport across the membrane. During the DD process, higher NH4+ concentrations resulted in a longer time to reach Donnan equilibrium and higher NH4+ flux, while increased Mg2+ concentrations resulted in lower NH4+ flux (from 0.414 to 0.213 mol·m-2·h-1). Using the synergistic effect of electrostatic interaction and non-covalent cross-linking, the designed membrane, referred to as GO-PEI (20) and prepared by a 20 min impregnation in the GO-PEI mixture, exhibited an NH4+ transport rate of 0.429 mol·m-2·h-1 and a Mg2+ transport rate of 0.003 mol·m-2·h-1 in single-salt solution tests and an NH4+/Mg2+ selectivity of 15.46, outperforming those of the unmodified and PEI membranes (1.30 and 5.74, respectively). In mixed salt solution tests, the GO-PEI (20) membrane showed a selectivity of 15.46 (~1.36, the unmodified membrane) for NH4+/Mg2+ and a good structural stability after 72 h of continuous operation. Therefore, this facile surface charge modulation approach provides a promising avenue for achieving efficient NH4+-selective separation by modified CEMs.

8.
RSC Adv ; 13(17): 11706-11711, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37063740

RESUMO

Organic phototransistors (OPTs), as the basic unit for organic image sensors, are emerging as one of the most promising light signal detectors. High performance UV-sensitive phototransistors are highly desired for the detection of UV light. Herein, by introducing the anthracene group to the 2,6-positions of dithieno[3,2-b:2',3'-d]thiophene, we designed and synthesized a new dithieno[3,2-b:2',3'-d]thiophene derivative, 2,6-di(anthracen-2-yl)dithieno[3,2-b:2',3'-d]thiophene (2,6-DADTT). The single crystal structure of 2,6-DADTT presents classical herringbone packing with multiple intermolecular interactions, including S⋯S (3.470 Å), S⋯C (3.304 Å, 3.391 Å, 3.394 Å) and C-H⋯π (2.763 Å, 2.822 Å, 2.846 Å, 2.865 Å, 2.885 Å, 2.890 Å) contacts. Single crystal organic field-effect transistors (SC-OFETs) based on 2,6-DADTT reach a highest mobility of 1.26 cm2 V-1 s-1 and an average mobility of 0.706 cm2 V-1 s-1. 2,6-DADTT-based single crystal organic phototransistors (OPTs) demonstrate photosensitivity (P) of 2.49 × 106, photoresponsivity (R) of 6.84 × 103 A W-1 and ultrahigh detectivity (D*) of 4.70 × 1016 Jones to UV light, which are among the best figures of merit for UV-sensitive OPTs. These excellent comprehensive performances indicate its good application prospects in integrated optoelectronics.

9.
Environ Sci Ecotechnol ; 15: 100255, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36915297

RESUMO

Ammonia recovery from wastewater is crucial, yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed. Herein, a membrane-based hybrid process of the Donnan dialysis-electrodialysis process (DD-ED) was proposed for sustainable and efficient ammonia recovery. In principle, DD removes the majority of ammonia in wastewater by exploring the concentration gradient of NH4 + and driven cation (Na+) across the cation exchange membrane, given industrial sodium salt as a driving chemical. An additional ED stage driven by solar energy realizes a further removal of ammonia, recovery of driven cation, and replenishment of OH- toward ammonia stripping. Our results demonstrated that the hybrid DD-ED process achieved ammonia removal efficiency >95%, driving cation (Na+) recovery efficiency >87.1% for synthetic streams, and reduced the OH- loss by up to 78% compared to a standalone DD case. Ammonia fluxes of 98.2 gN m-2 d-1 with the real anaerobic digestion effluent were observed using only solar energy input at 3.8 kWh kgN -1. With verified mass transfer modeling, reasonably controlled operation, and beneficial recovery performance, the hybrid process can be a promising candidate for future nutrient recovery from wastewater in a rural, remote area.

10.
Cell Mol Gastroenterol Hepatol ; 15(5): 1181-1198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787843

RESUMO

BACKGROUND & AIMS: CD161-expressing CD8+ T cells consist of mucosal-associated invariant T cells with semi-invariant T-cell receptor (TCR) use and non-mucosal-associated invariant T CD161+CD8+ T cells with polyclonal TCR repertoire. Although CD161+CD8+ T cells are enriched in liver and embrace hepatitis B virus (HBV)-specific T cells in chronic hepatitis B (CHB) patients, their roles in disease progression remain poorly understood. This study aimed to decipher their profiling and dynamic changes during chronic HBV infection. METHODS: Blood samples from 257 CHB patients and nontumor liver specimens from 73 HBV-positive patients were analyzed for CD161+CD8+ T-cell characterization by flow cytometry, TCR repertoire determination, transcriptomic analyses, and cell experiments. RESULTS: CD161+CD8+ T cells were increased and hyperactivated in patients, while positive correlation between the CD161+CD8+ T-cell ratio and HBV-DNA level suggested this was insufficient to control HBV replication. The overlap of complementarity determining region 3 sequences supported the switch between CD161-CD8+ and CD161+CD8+ populations. Although CD161+CD8+ T cells were endowed with innateness phenotype and enhanced antiviral capacity, the population from patients had impaired type I cytokine production, and increased interleukin 17 and granzyme B secretion. The increased CD161+CD8+ T cells and their increased granzyme B secretion correlated positively with inflammation-associated liver injury. Hepatic CD161+CD8+ T cells showed neutrophil-related pathogenic potential because they had increased transcript signatures and proinflammatory cytokine production in neutrophil recruitment- and response-related pathways that changed consistently in the injured liver. CONCLUSIONS: Our results highlight the reduced antiviral potency but increased pathogenic potential of CD161+CD8+ T cells in CHB patients, supporting CD161 expression as a marker of pathogenic CD8+ T subset and the intervention target for liver injury.


Assuntos
Linfócitos T CD8-Positivos , Hepatite B Crônica , Humanos , Antivirais , Granzimas , Vírus da Hepatite B , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia
11.
Environ Sci Technol ; 56(22): 16271-16280, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36239692

RESUMO

Electroactive membranes have the potential to address membrane fouling via electrokinetic phenomena. However, additional energy consumption and complex material design represent chief barriers to achieving sustainable and economically viable antifouling performance. Herein, we present a novel strategy for fabricating a piezoelectric antifouling polyvinylidene fluoride (PVDF) membrane (Pi-UFM) by integrating the ion-dipole interactions (NaCl coagulation bath) and mild poling (in situ electric field) into a one-step phase separation process. This Pi-UFM with an intact porous structure could be self-powered in a typical ultrafiltration (UF) process via the responsivity to pressure stimuli, where the dominant ß-PVDF phase and the out-of-plane aligned dipoles were demonstrated to be critical to obtain piezoelectricity. By challenging with different feed solutions, the Pi-UFM achieved enhanced antifouling capacity for organic foulants even with high ionic strength, suggesting that electrostatic repulsion and hydration repulsion were behind the antifouling mechanism. Furthermore, the TMP-dependent output performance of the Pi-UFM in both air and water confirmed its ability for converting ambient mechanical energy to in situ surface potential (ζ), demonstrating that this antifouling performance was a result of the membrane electromechanical transducer actions. Therefore, this study provides useful insight and strategy to enable piezoelectric materials for membrane filtration applications with energy efficiency and extend functionalities.


Assuntos
Incrustação Biológica , Ultrafiltração , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Polivinil/química
12.
Front Vet Sci ; 9: 1009103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204286

RESUMO

Porcine parvoviruses (PPVs) are a group of small non-enveloped viruses with seven species (porcine parvovirus 1-7, PPV1-7) have been identified. In this study, a novel porcine parvovirus, provisionally named porcine parvovirus 8 (PPV8), was initially identified via high-throughput sequencing (HTS) in porcine reproductive and respiratory syndrome virus-positive samples collected from swine herds in Guangdong province, 2021. The nearly full-length genome of PPV8 strain GDJM2021 is 4,380 nucleotides in length with two overlapping open ORFs encoding NS1 and VP1 respectively. Sequence analysis indicated that PPV8 shared 16.23-44.18% sequence identity at the genomic levels to PPV1-7 with the relatively highest homology to PPV1. PPV8-GDJM2021 shared 31.86-32.68% aa sequence identity of NS1 protein with those of PPV1 and porcine bufavirus (PBuV), and formed an independent branch neighboring to those formed by members of the genus Protoparvovirus. Of the 211 clinical samples collected from 1990 to 2021, 37 samples (17.5%) distributed over 12 regions in China were positive for PPV8 with time spanning 24 years (1998-2021). To our knowledge, this is the first report on the genomic characterization of the novel PPV8 and its epidemiological situations in China.

14.
Front Vet Sci ; 9: 1111919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699335

RESUMO

Group A rotaviruses of the family Reoviridae is one of the important intestinal pathogens causing diarrhea in piglets and humans. A human-porcine reassortment rotavirus, GDJM1, was identified from outbreak of diarrhea in suckling piglets and it associated with 60.00% (324/540) morbidity and 20.99% (68/324) mortality in Guangdong Province of China in 2022. Thus, to further characterize the evolutionary diversity of GDJM1, all gene segments were analyzed. The genome constellation was G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Nucleotide sequence identity and phylogenetic analyses showed that the VP6, VP7, NSP4 and NSP5 genes of GDJM1 were the most closely related to the respective genes of porcine strains, with the highest homology ranging from 95.65-98.55% identity. The remaining seven genes (VP1-VP4, NSP1-NSP3) were the most closely related to human strains, with the highest homology ranging from 91.83-96.69% similarity. Therefore, it is likely that GDJM1 emerged as the result of genetic reassortment between porcine and human rotaviruses. To our knowledge, this is the first report that a human-porcine reassortment G9P[19] RVA strain has been identified in mainland China, which providing important insights into evolutionary characterization of G9P[19] RVA strain, and reveals that the strain has a potential risk of cross-species transmission.

15.
Water Sci Technol ; 83(1): 198-211, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33460418

RESUMO

Blended organic copolymer (or homopolymer) and inorganic nanoparticles have been widely used (separately or simultaneously) for optimizing membrane pore structure and surface functionality. However, the prepared membranes suffer from degraded stability and insufficient integrity due to the high solubility or incompatibility of the blending additives. In this work, an organic-inorganic nanocomposite (i.e., PLA-TiO2) was designed, and employed for PSF membrane preparation. The Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis confirmed that bidentate chelating dominated the bonding mechanism between PLA and TiO2. The resultant PSF/PLA-TiO2 membranes possessed a highly porous surface with narrowed pore size distribution, demonstrating the strong pore forming ability of PLA-TiO2 for membrane preparations. Moreover, owing to the distinct inorganic-organic molecular conformation, the PLA-TiO2 exhibited enhanced stability and dispersibility within the PSF substance, which endowed the membrane with long-acting hydrophilicity and UV responsiveness. Given the UV responsiveness that is introduced by PLA-TiO2, UV-assisted strategies (UV-F and UV-C) were designed to further mitigate membrane fouling. The fouling analysis indicated that both reversible fouling and irreversible fouling were reduced in the UV-C process, signifying the synergistic effect between photocatalysis and hydraulics in membrane fouling mitigation. The enhanced membrane performance and the efficient preparation process highlight the potential of PLA-TiO2 in membrane modifications.


Assuntos
Nanocompostos , Polímeros , Poliésteres , Sulfonas , Titânio
16.
Water Res ; 185: 116240, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798888

RESUMO

Membrane fouling restricts the wide applications of membrane technology and therefore, it is essential to develop novel analytical techniques to characterize membrane fouling and to further understand the mechanism behind it. In this work, we demonstrate a capability of high-resolution large-scale 3D visualization and quantification of the foulants on/in membranes during fouling process based on light sheet fluorescence microscopy as a noninvasive reproducible optical approach. The adsorption processes of dextran (DEX) on/in two polyvinylidene fluoride membranes with similar pore structure but distinct surface hydrophilicity were clearly observed. For a hydrophilic polyvinylidene fluoride (PVDF) membrane, the diffusion and adsorption of the DEX in membrane matrix were much slower compared to that for a hydrophobic membrane. A concentrated foulant layer was observed in the superficial potion of the hydrophilic membrane matrix while the foulants were observed quickly penetrating across the overall hydrophobic PVDF membrane during a short adsorption process. Both the inner concentrated fouling layer (in membrane superficial portion) and the foulant penetration (in membrane asymmetric structure) presented correlations with membrane fouling irreversibility, which could elucidate the microscopic events of hydrophilic membrane in resisting fouling. In addition, the imaging results could be correlated with the XDLVO analysis, suggesting how the membrane-foulant and foulant-foulant interfacial interactions resulted in a time-dependent membrane fouling process. This work provides a fast, highly-sensitive and noninvasive imaging platform for in situ characterization of membrane fouling evolution and should be useful for a wide range of membrane-based process explorations.


Assuntos
Membranas Artificiais , Purificação da Água , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Membranas , Microscopia de Fluorescência , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...